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Abstract

In this paper, a TSK-type fuzzy model (TFM) with a hybrid evolutionary learning algorithm (HELA) is proposed. The proposed
HELA method combines the compact genetic algorithm (CGA) and the modified variable-length genetic algorithm (MVGA). Both
the number of fuzzy rules and the adjustable parameters in the TFM are designed concurrently by the HELA method. In the
proposed HELA method, individuals of the same length constitute the same group, and there are multiple groups in a population.
Moreover, the proposed HELA adopts the compact genetic algorithm (CGA) to carry out the elite-based reproduction strategy. The
CGA represents a population as a probability distribution over the set of solutions and is operationally equivalent to the order-one
behavior of the simple GA. The evolution processes of a population consist of three major operations: group reproduction using
the compact genetic algorithm, variable two-part individual crossover, and variable two-part mutation. Computer simulations have
demonstrated that the proposed HELA method gives a better performance than some existing methods.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, fuzzy models for various applications have become a popular research topic [1–9]. The key
advantage of the fuzzy model approach lies in the fact that it does not require a mathematical description of a
system when the system is modeled. Two typical types of fuzzy models are the Mamdani-type and TSK-type models.
Many researchers have shown that using a TSK-type fuzzy model achieves superior performance in network size and
learning accuracy than using the Mamdani-type fuzzy model [6,7].

Several learning algorithms of fuzzy models have been proposed in [1–9]. The backpropagation learning
algorithm [1] is a widely used algorithm for training fuzzy models by means of error propagation via variation
calculus. However, the backpropagation learning algorithm is a powerful training technique that can be applied in
networks with feed-forward structure to transform them into adaptive systems. But the algorithm may reach the
local minima and the global solution may never be found because the steepest descent optimization technique is
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used in the backpropagation learning algorithm to minimize the error function. In addition, the performance of the
backpropagation learning algorithm depends on the initial values of the model parameters, and for different network
topologies one has to derive new mathematical expressions for each network layer.

The advent of evolutionary computation has inspired new designs and models, such as the optimal design of neural
networks and fuzzy models, for optimization problem solving. In contrast to traditional computation systems, which
may be good at accurate and exact computation but have brittle operations (i.e. for different topologies one has to
derive new mathematical expressions), evolutionary computation provides a more robust and efficient approach for
solving complex real-world problems [10–12]. Many evolutionary algorithms, such as genetic algorithms (GA) [13],
genetic programming [14], evolutionary programming [15], and evolution strategies [16], have been proposed. Since
they are heuristic and stochastic, they are less likely to get stuck at the local minimum, and they are based on
populations made up of individuals with specific behaviors similar to certain biological phenomena. These common
characteristics have led to the development of evolutionary computation as an increasingly important field. For this
reason, an evolutionary fuzzy model is discussed in this paper, and a new algorithm, the hybrid evolution learning
algorithm (HELA), is proposed.

The evolutionary fuzzy model generates a fuzzy system automatically by incorporating evolutionary learning
procedures [10–16], where the well-known procedure is GA. Several genetic fuzzy models, i.e. fuzzy models
augmented by a learning process based on GAs, have been proposed [17–20]. In [17], Karr applied GAs to the
design of the membership functions of a fuzzy controller, with the fuzzy rule set assigned in advance. Since the
membership functions and rule sets are co-dependent, simultaneous design of these two approaches would be a more
appropriate methodology. Based on this concept, many researchers have applied GAs to optimize both the parameters
of the membership functions and the rule sets [18–20]. Differences between the approaches depend mainly on the
type of coding and the way in which the membership functions are optimized. To enhance the searching capability of
GA, in [21] a relatively new evolutionary algorithm, the particle swarm optimization [22,23], was incorporated, and
a hybrid of GA and particle swarm optimization was proposed for recurrent neural/fuzzy networks design. However,
in the aforementioned approaches, the number of fuzzy rules had to be assigned in advance. To overcome these
inconveniences, the capability to do automatic searches for the number of fuzzy rules is included in the proposed
HELA. To obtain this capability, the idea of variable-length genotypes [24] is incorporated, and the idea of compact
GA and its corresponding evolution is also proposed in the HELA.

Let the length of each individual denote the total number of genes in it. In the proposed HELA for fuzzy model
design, the initial length of each individual may be different from each other, depending on the total number of rules
encoded in it. Individuals with an equal number of rules constitute the same group, so initially there are several groups
in a population. In this paper, we use the elite-based reproduction strategy to keep the best group. Therefore, the
best group can be reproduced many times for each generation. The evolution of groups in HELA consists of three
operations: the elite-based reproduction strategy using the compact genetic algorithm, variable two-part crossover,
and variable two-part mutation. The effectiveness of the proposed HELA method will be verified by identification and
control problems.

This paper is organized as follows. Section 2 describes the TSK-type fuzzy model (TFM). In Section 3, the
proposed HELA that constructs the TFM automatically is introduced. Section 4 presents the simulation results. The
conclusions are given in the last section.

2. Structure of TSK-type fuzzy model (TFM)

A TSK-type fuzzy model employs different implication and aggregation methods from a standard Mamdani fuzzy
model. Instead of using fuzzy sets, the conclusion part of a rule is a linear combination of the crisp inputs.

IF x1 is A1 j (m1 j , σ1 j ) and x2 is A2 j (m2 j , σ2 j ) . . . and xn is Anj (mnj , σnj )

Then y′
= w0 j + w1 j x1 + · · · + wnj xn . (1)

In this paper, we adopt a TSK-type fuzzy model (TFM) with a hybrid evolutionary learning algorithm (HELA) to
perform various identification and control problems. The structure of a TFM is shown in Fig. 1, where n and R are the
number of input dimensions and the number of rules respectively. It is a five-layer network structure. In the proposed
TFM model, the firing strength of a fuzzy rule is calculated by performing the following “AND” operation on the truth
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Fig. 1. Structure of the TSK-type fuzzy model.

values of each variable to its corresponding fuzzy sets by:

u(3)i j =

n∏
i=1

exp

−

[
u(1)i − mi j

]2

σ 2
i j

 (2)

where u(1)i = xi and u(3)i j are the output of the first and third layers, and mi j and σi j are the center and the width of the
Gaussian membership function of the j th term of the i th input variable xi , respectively.

The output of a fuzzy system is computed by:

y = u(5) =

R∑
j=1

u(4)j

R∑
j=1

u(3)j

=

R∑
j=1

u(3)j

(
w0 j +

n∑
i=1

wi j xi

)
R∑

j=1
u(3)j

(3)

where u(5) is the output of the 5th layer and R is the number of fuzzy rules.

3. The hybrid evolutionary learning algorithm (HELA)

This section will introduce the proposed hybrid evolutionary learning algorithm (HELA). Recently, many efforts
to enhance traditional GAs have been made [25]. Among them, one category focuses on modifying the structure of a
population or the role an individual plays in it [26–29]. Examples in this category include the distributed GA [26], the
cellular GA [27], and the symbiotic GA [29].
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In a normal evolution algorithm, the number of fuzzy rules in a fuzzy model must be predefined. Our proposed
HELA combines the compact genetic algorithm (CGA) and the modified variable-length genetic algorithm (MVGA).
In MVGA, the initial length of each individual may be different from each other, depending on the total number of
rules encoded in it. Thus, we do not need to predefine the number of fuzzy rules.

Individuals with an equal number of rules constitute the same group. Thus, initially, there are several groups in a
population. Unlike the traditional VGA, Bandyopadhyay [24] used “#” to mean “does not care”. In this study, we adopt
the variable two-part crossover (VTC) and the variable two-part mutation (VTM) to make the traditional crossover
and mutation operators applicable to different lengths of chromosomes. In VTC and VTM, we do not use “#” to mean
“does not care”.

We divide a chromosome into two parts. The first part of the chromosome gives the antecedent parameters of
the fuzzy rules (i.e., the parameters of the membership functions), and the second part of the chromosome gives the
consequent parameters of the fuzzy rules (i.e., the coefficients of the linear combination). Each part of the chromosome
can be performed using the VTC on the overlapping genes of two chromosomes. The structure of the chromosomes
in MVGA is shown in Fig. 2.

In traditional VGA, Bandyopadhyay [24] only evaluated the performance of each chromosome in a population.
The performance of the number of rules was not evaluated in [24]. In this study, we use the elite-based reproduction
strategy to keep the best group with the same length chromosomes. Therefore, the best group can be reproduced many
times for each generation. The elite-based reproduction strategy is similar to the maturing phenomenon in society,
where individuals become more suitable to the environment as they acquire knowledge from society.

In the proposed HELA method, we adopt the compact genetic algorithm (CGA) [30] to carry out the elite-based
reproduction strategy. The CGA represents a population as a probability distribution over the set of solutions and is
operationally equivalent to the order-one behavior of the simple GA [31]. The pseudo code of the CGA is shown in
Fig. 3. As shown in Fig. 3, we can see that the CGA uses the probability vectors to represent the gene is suitable to
1 or 0. The advantage of the CGA is that it processes each gene independently and requires less memory than the
normal GA. The learning diagram of the proposed HELA method is shown in Fig. 4. The building blocks (BBs) in
CGA represent the suitable lengths of the chromosomes and reproduce the chromosomes according to the BBs.

The learning process of the HELA involves seven major operators: coding, initializing, evaluating, sorting, elite-
based reproduction strategy, variable two-part crossover, and variable two-part mutation. Fig. 5 shows the flowchart
of the learning process. The whole learning process is described step-by-step as follows:

3.1. Coding

The coding step consists of the coding done by the MVGA and the CGA. The MVGA codes a TSK-type fuzzy
model into a chromosome, as shown in Fig. 6. Fig. 6 shows a fuzzy rule that has the form in Eq. (2), where mi j
and σi j represent a Gaussian membership function with mean and deviation, respectively, of the i th dimension and
the j th rule node. The CGA codes the probability vector into building blocks (BBs), as shown in Fig. 7, where each
probability vector represents the suitability of the rule of a TFM. In Fig. 7 we can see that we must predefine the
maximum number of rules (Rmax) and minimum number of rules (Rmin) to prevent less or more fuzzy rules from
being generated in a TFM.

3.2. Initializing

The initializing step sets initial values in the MVGA and the CGA. In the MVGA, individuals should be randomly
generated initially to construct a population. In order to keep the same number of chromosomes in each group, the
number of chromosomes in each group needs to be generated α chromosomes (that we predefined). Therefore, the
population size must be set to α∗(Rmax − Rmin). In the CGA, the probability vectors of BBs are set to 0.5 initially.

3.3. Evaluating

The evaluating step is to evaluate each chromosome in a population. The fitness function is defined as follows:

fit = 1/(1 + E(y, ȳ)) (4)
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Fig. 2. The structure of the chromosome in the MVGA.

Fig. 3. The pseudo code of the CGA.

where E(y, ȳ) =

√√√√ 1
N

N∑
z=1

(yz − ȳz)2, for z = 1, 2, . . . , N (5)

where N represents the number of input data; y and ȳ represent the model output and desired output.
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Fig. 4. The whole learning diagram of the proposed HELA.

3.4. Sorting

We sort the chromosomes in each population according to the decreasing fitness values. After sorting the
chromosomes in each population, the algorithm goes to the next step.

3.5. Elite-based reproduction strategy (ERS)

Reproduction is a process in which individual strings are copied according to their fitness value. A fitness value is
assigned to each individual using Eqs. (4) and (5). The higher a fitness value, the better the fitness. In this study, we use
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Fig. 5. The flowchart of the parameter learning in the HELA.

Fig. 6. Coding a fuzzy rule into a chromosome in the MVGA.

Fig. 7. Coding of the CGA.

an elite-based reproduction strategy (ERS) to mimic the maturing phenomenon in society, where individuals become
more suitable to the environment as they acquire more knowledge from society. The CGA is used here to perform the
ERS. The CGA represents the population as a probability distribution over the set of solutions and is operationally
equivalent to the order-one behavior of the simple GA. The CGA uses the BBs to represent the suitable length of the
chromosomes and reproduces the chromosomes according to the probability vector in the BBs. The best performing
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Fig. 8. The pseudo code for the ERS.

Fig. 9. Variable two-part crossover operation in the HELA.

individuals in the top half of each population are used to perform ERS. According to the results of the ERS, the other
half is generated by using crossover and mutation operations. The details of the ERS are as follows:
Step 1. Update the probability vectors of the BBs according to the following equations:{

Vk = Vk + (Upt value∗

kλ), if Avg <= Max fitk
Vk = Vk − (Upt value∗

kλ), otherwise
(6)

where k = [Rmax, Rmin]

Avg =

Nc∑
p=1

fitp/Nc (7)

Upt valuek = Total fitk

/
Nc∑

p=1

fitp (8)
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Total fitk =

Nk∑
p

fitkp (9)

where Vk is the probability vector in the BBs and presents the suitable chromosome in the group with k rules in a
population; λ is a threshold value we predefined; Max fitk is the best fitness value in the kth group; Avg represents
the average fitness value in the whole population; Nc is the population size; and Nk is the kth group size. As show
in Eq. (10), if Max fitk >= Avg that means the suitable chromosomes in the kth group should be increased. On the
other hand, if Max fitk < Avg that means the suitable chromosomes in the kth group should be decreased. Eq. (13)
represents the sum of the fitness values of the chromosomes in the kth group.
Step 2. Determine the reproduction number according to the probability vectors of the BBs as follows:

Repk = (Psize/2) ∗ (Vk/Total Velocy)

where k = [Rmax, Rmin] (10)

Total Velocy =

Rmax∑
k=Rmin

Vk (11)

where Psize represents the population size; Repk is the reproduction number that represents Repk chromosomes in the
kth group need to be generated, and a chromosome has k rules for constructing a TFM.
Step 3. After step 2, the reproduction number of each group in the top half of a population is obtained. Then we
generate Repk chromosomes in each group using the roulette-wheel selection method [33].
Step 4. If any probability vector in BBs reaches 1, then stop the ERS and set the probability vector to 1 for all groups
with the same number of rules, according to step 2. In order to keep the same number of rules in every group, the
redundant genes of chromosomes in different groups are removed. Moreover, the lack of genes in different groups is
generated randomly. To replace the ERS step, we use the roulette-wheel selection method [33] — a simulated roulette
is spun — for this reproduction process. The pseudo code for the ERS is shown in Fig. 8.

3.6. Variable two-part crossover

Although the reproduction operation can search for the best existing individuals, it does not create any new
individuals. In nature, an offspring has two parents and inherits genes from both. The main operator working on
the parents is the crossover operator, the operation of which occurs for a selected pair with a crossover rate. In this
paper, we propose the variable two-part crossover (VTC) to perform this step. In VTC, parents are selected from the
enhanced elites. Tournament selection [33] is used, in which two enhanced elites are selected, and their fitness values
are compared. The elite with the higher fitness value is selected as one parent. The other parent is also selected in the
same way. The two parents may be selected from the same or different groups. Performing crossover on the selected
parents creates the offspring. Since parents may be of different lengths (i.e. from different groups), we must avoid
misalignment of individuals in the crossover operation. Therefore, variable two-part crossover is proposed. The first
part of the chromosome gives the antecedent parameters of the fuzzy rules (i.e., the parameters of the membership
functions), and the second part of the chromosome gives the consequent parameters of the fuzzy rules (i.e., the
coefficients of the linear combination). The two-point crossover is adopted in each part of the chromosome. Thus,
new individuals are created by exchanging the site’s values between the selected sites of the parents’ individuals. Two
individuals of different lengths using the variable two-part crossover operation are shown in Fig. 9. After the VTC
operation, the individuals with poor performance are replaced by the new offspring.

3.7. Variable two-part mutation

Although reproduction and crossover operations produce many new strings, these strings do not provide any new
information to every population at the site of an individual. Mutation can randomly alter the allele of a gene. In this
paper, we propose the variable two-part mutation (VTM) to perform the mutation operation. The proposed VTM is
different from the traditional mutation used to mutate chromosomes and is applicable to chromosomes of different
lengths. The first part of the chromosome gives the antecedent parameters of the fuzzy rules, and the second part of the
chromosome gives the consequent parameters of the fuzzy rules. In each part of a chromosome, the uniform mutation
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Fig. 10. Variable two-part mutation operation in the HELA.

Fig. 11. Results of the probability vectors of the ERS step in the proposed HELA.

is adopted. Originally, mutation was used only for the binary code chromosome. To adopt the concept of introducing
variations into the chromosome, a random mutation [33] has been used for the real code chromosome. The equation
of a random mutation [33] is as follows:

g = g + ψ(µ, σ) (12)

where g is the real value gene; ψ is a random function and µ, σ are the mean and variance from the domain of the
corresponding variable, respectively. Normally, a random function may be Gaussian or normally distributed. In this
paper, we adopt a normally distributed random function. The VTM operation of each individual is shown in Fig. 10.

After the above-mentioned operations, the problem of groups constituted by the most suitable number of rules will
be solved. The number of elites in other groups will decrease and most of them will become zero (in most cases, there
will be no elites). That is, our method can eliminate unsuitable groups and fuzzy rules.

4. Simulations

To verify the performance of the proposed HELA method, we use two different simulations. The first simulation
used the example given by Narendra and Parthasarathy [34]. Secondly, the simulation was used to control the water
bath temperature control system that is described in [35]. For the two examples, the initial parameters are given in
Table 1 before training.
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Table 1
The initial parameters before training

Parameters Value

Population size 14
Crossover rate 0.5
Mutation rate 0.5
[σmin, σmax] [0,1]
[mmin,mmax] [0,1]
[wmin, wmax] [−20,20]
Rmax 12
Rmin 3
λ 0.01
α 2

Example 1: Identification of nonlinear dynamic system

The first example used for identification is described by the difference equation

y(k + 1) =
y(k)

1 + y2(k)
+ u3(k). (13)

The output of this equation depends nonlinearly on both its past value and the input, but the effects of the input and
output values are additive. The 200 training input patterns were generated with u(k) = sin(2πk/25). The evolution
progressed for 1000 generations and was repeated 50 times. After 1000 generations, the final average root mean
square (rms) errors of the training data and testing data approximated 0.004 and 0.0051. Fig. 11 shows the results of
the probability vector in the building blocks (BBs) of the ERS step at 1000 generations. The building blocks (BBs)
in CGA represent the suitable lengths of the chromosomes and reproduce the chromosomes according to the BBs. As
shown in Fig. 11, we can see that the final average optimal number of rules is 7. The fuzzy rules of the TFM using the
HELA method are described as follows:

Rule 1: IF x1 is A11(0.23, 0.66) and x2 is A21(0.11, 0.47)

THEN y′
= −1.09 − 0.37x1 + 0.99x2

Rule 2: IF x1 is A12(0.58, 0.61) and x2 is A22(0.43, 0.24)

THEN y′
= 8.82 − 9.88x1 − 0.14x2

Rule 3: IF x1 is A13(0.31, 0.68) and x2 is A23(0.65, 0.32)

THEN y′
= −0.43 − 0.65x1 + 1.01x2

Rule 4: IF x1 is A14(0.71, 0.41) and x2 is A24(0.19, 0.96)

THEN y′
= −0.93 + 0.26x1 + 1.09x2

Rule 5: IF x1 is A15(0.94, 0.57) and x2 is A25(0.52, 0.50)

THEN y′
= −0.25 + 0.20x1 + 0.04x2

Rule 6: IF x1 is A16(0.95, 0.37) and x2 is A26(0.17, 0.80)

THEN y′
= 0.33 + 0.62x1 + 0.58x2

Rule 7: IF x1 is A17(0.04, 0.62) and x2 is A27(0.14, 0.98)

THEN y′
= 0.97 + 1.09x1 −1.97x2 .

To show the effectiveness and efficiency of the proposed HELA, a TFM using symbiotic evolution (SE) [32] and
the genetic algorithm (GA) [17] was applied to the same problem. In GA and SE, the population size was set to 200
and the crossover and mutation probabilities were set to 0.5 and 0.3, respectively. We set seven rules to construct the
TFM in the SE and the GA. The evolution process progressed for 1000 generations and was repeated 50 times. After
1000 generations, the final average rms errors of the training data for the SE and the GA approximated 0.009 and 0.10.
Fig. 12(a)–(c) show the outputs of the three methods for the input u(k) = sin(2πk/25). As shown in Fig. 12(a)–(c),
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Fig. 12. Results of the desired output and (a) the proposed HELA, (b) the SE [32], and (c) the GA [17].

Fig. 13. The learning curves of the proposed HELA method, the SE [32] and the GA [17].

the identification ability of the HELA method was better than those of the SE and GA methods. Fig. 13 shows the
learning curves of the three methods. In this figure, we find that the proposed HELA method obtains a lower rms error
than the others.

We also compare the performance of our model with some existing models [6,7,34,36]. The performance indices
considered include rms error, number of parameters, and training steps and CPU times. The comparison results are



C.-J. Lin, Y.-J. Xu / Mathematical and Computer Modelling 43 (2006) 563–581 575

Table 2
Performance comparison of various existing models

Evolution algorithm Backpropagation algorithm
HELA SE GA ANFIS SOFIN Hybrid Neural
method method method [6] [7] system [36] networks

[32] [17] [34]

RMS error (training) 0.004 0.009 0.10 0.0061 0.013 0.032 0.07
RMS error (testing) 0.0051 0.012 0.11 0.007 0.015 0.040 0.079
Number of parameters 49 49 49 49 29 112 270
Generations 1000 1000 1000 – – – –
Training steps – – – 2000 50 000 30 000 100 000
CPU times (seconds) 71 267 227 30 46 198 652

tabulated in Table 2. All the compared algorithms in Table 2 were repeated 50 times. Jang [6] proposed a model,
called adaptive-network-based fuzzy inference system architecture, for learning and tuning a fuzzy identifier. In [6],
there are seven fuzzy logic rules given in advance by experts. After 2000 training steps, the average rms error of the
training data and testing data approximate 0.0061 and 0.007. The results are shown in the fourth column of Table 2.
Juang and Lin [7] proposed the SONFIN model. The proposed SONFIN is inherently a modified TSK-type fuzzy
rule-based model possessing neural networks. In the SONFIN model the training is performed for 5000 time steps.
The average rms error of the training data and testing data approximate 0.013 and 0.015. The results are shown in the
fifth column of Table 2. Lin [36] proposed a hybrid system and incorporates a priori knowledge into the selection of
initial parameter values. In [36], the fuzzy system contains seven rules and the neural network contains seven hidden
units. After the parameter learning, the average rms error of the training data and testing data approximate 0.032 and
0.040. The results are shown in the sixth column of Table 2. Narendra and Paethasarathy [34] using neural networks
with two hidden layers. In [34], the identification process is 100 000 training steps. After the parameter learning, the
average rms error of the training data and testing data approximate 0.07 and 0.079. The results are shown in the seventh
column of Table 2. Besides to compare the performance of the training data and testing data, as shown in Table 2,
we also compare the CPU times of the existing models [17,32,6,7,34,36]. In this experiment, we used a Pentium 4
1.5 GHz CPU, 512 MB of main memory, and the Visual C++ 6.0 simulation software. In Table 2, we can know that
some backpropagation learning algorithms ([6] and [7]) obtain shorter CPU times than the proposed HELA method.
This is because the backpropagation learning algorithms can converge more quickly than the evolution algorithms.
However, the BP algorithm may have the local minima problem. As shown in Table 2, the proposed HELA obtains a
smaller rms error than other existing models. Moreover, in the evolution algorithms (the HELA, [17], and [32]), our
proposed HELA still obtains smaller CPU times than [17], and [32].

Example 2: Water bath temperature control system

The goal of this simulation is to control the temperature of a water bath system given by

dy(t)

dt
=

u(t)

C
+

Y0 − y(t)

R1C
(14)

where y(t) is the system output temperature in ◦C; u(t) is heating flowing inward the system; Y0 is room temperature;
C is the equivalent system thermal capacity; and R1 is the equivalent thermal resistance between the system borders
and surroundings.

Assuming that R1 and C are essentially constant, we rewrite the system in Eq. (14) into discrete-time form with
some reasonable approximation. The system

y(t + 1) = e−αT s y(k)+

β
α
(1 − e−αT s)

1 + e0.5y(k)−40
u(k)+ [1 − e−αT s

]y0 (15)

is obtained, where α and β are some constant values describing R and C . The system parameters used in this example
are α = 1.0015e−4, β = 8.67973e−3 and Y0 = 25.0 (◦C), which were obtained from a real water bath plant in [35].
The input u(k) is limited between 0v and 5v (i.e., 0v ≤ u(k) ≤ 5v). The sampling period is T s = 30. The system
configuration is shown in Fig. 14, where yref is the desired temperature of the controlled plant.
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Fig. 14. Flow diagram of the TFM using the HELA for temperature control problem.

Fig. 15. Results of the probability vectors of the ERS step in the proposed HELA.

In the TFM, a sequence of random input signals urd(k) limited to 0 and 5V is injected directly into the simulated
system described in Eq. (15). The 120 training patterns are chosen from the input–outputs characteristic in order to
cover the entire reference output. The initial temperature of the water is 25 ◦C, and the temperature rises progressively
when random input signals are injected. The two input variables yref and y(k) and the output u(k) are normalized
between 0 and 1 over the following ranges, yref: [25,85], y(k): [25,85], u(k): [0,5]. The evolution progressed for
1000 generations and was repeated 50 times. Fig. 15 shows the result of the probability vectors in CGA after 1000
generations. As shown in Fig. 15 we can see that the final average optimal number of rules is 6. The fuzzy rules of the
TFM using the HELA method are described as follows:

Rule 1: IF x1 is A11(0.89, 0.43) and x2 is A21(0.49, 0.15)

THEN y′
= 13.42 − 10.04x1 − 0.92x2

Rule 2: IF x1 is A12(0.55, 0.50) and x2 is A22(0.16, 0.98)

THEN y′
= −7.96 + 7.51x1 + 5.29x2

Rule 3: IF x1 is A13(0.40, 0.78) and x2 is A23(0.12, 0.85)

THEN y′
= −5.37 − 6.75x1 − 0.083x2

Rule 4: IF x1 is A14(0.91, 0.62) and x2 is A24(0.22, 0.12)

THEN y′
= −3.09 + 9.21x1 − 8.85x2

Rule 5: IF x1 is A15(0.96, 0.69) and x2 is A25(0.58, 0.24)

THEN y′
= 19.68 − 19.71x1 − 0.59x2
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Fig. 16. The learning curves of the proposed HELA, the SE [32], and the GA [17].

Fig. 17. (a) Final regulation performance of the TFM training by the proposed HELA for water bath system. (b) The error curves of the HELA, the
SE [32], and the GA [17].

Rule 6: IF x1 is A16(0.39, 0.30) and x2 is A26(0.51, 0.70)

THEN y′
= −9.27 − 2.41x1 + 0.40x2.

In this paper, as with example 1, we also compared the performance of the HELA method with the symbiotic
evolution (SE) [32] and the genetic algorithm (GA) [17]. The GA and SE used are the same as those used in example 1.



578 C.-J. Lin, Y.-J. Xu / Mathematical and Computer Modelling 43 (2006) 563–581

Fig. 18. Behavior of the TFM training by the proposed HELA under the impulse noise for the water bath system. (b) The error curves of the HELA,
the SE [32], and the GA [17].

The evolution also progressed for 1000 generations and was repeated 50 times. Fig. 16 shows the learning curves of
the four models. In Fig. 16 we can also see that the proposed HELA obtains a better fitness value than other models.
To test the performance of the three models, the comparison performance measures include set-points regulation, the
influence of impulse noise, and a large parameter variation in the system, and tracking capability of the controllers.

The first task is to control the simulated system to follow three set-points.

yref(k) =

35 ◦C, for k ≤ 40
55 ◦C, for 40 < k ≤ 80
75 ◦C, for 80 < k ≤ 120.

(16)

The regulation performance of the HELA is shown in Fig. 17(a). We also test the regulation performance by using the
SE [32] and the GA [17]. The error curves of the HELA, the SE, and the GA are shown in Fig. 17(b). In this figure,
the HELA obtains smaller errors than the other two controllers.

The second set of simulations is carried out for the purpose of studying the noise-rejection ability of the four models
when some unknown impulse noise is imposed on the process. One impulse noise value −5 ◦C is added to the plant
output at the 60th sampling instant. A set-point of 50 ◦C is performed in this set of simulations. The behaviors of the
HELA under the influence of impulse noise and the corresponding errors are shown in Fig. 18(a)–(b).

One common characteristic of many industrial-control processes is that their parameters tend to change in an
unpredictable way. To test the robustness of the four controllers, a value of 0.7 ∗ u(k − 2) is added to the plant input
after the 60th sample in the fourth set of simulations. A set-point of 50 ◦C is used in this set of simulations. The
behaviors of the HELA when there is a change in the plant dynamics are shown in Fig. 19(a). The corresponding
errors for the HELA, the SE, and the GA are shown in Fig. 19(b).
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Fig. 19. (a) Behavior of the TFM training by the proposed HELA when a change occurs in the water bath system. (b) The error curves of the
HELA, the SE [21], and the GA [17].

In the final set of simulations, the tracking capability of the HELA with respect to ramp-reference signals is studied.
We define

yref(k) =


34 ◦C for k ≤ 30
(34 + 0.5 ∗ (k − 30)) ◦C for 30 < k ≤ 50
(44 + 0.8 ∗ (k − 50)) ◦C for 50 < k ≤ 70
(60 + 0.5 ∗ (k − 70)) ◦C for 70 < k ≤ 90
70 ◦C for 90 < k ≤ 120.

(17)

The tracking performance of the HELA is shown in Fig. 20(a). The corresponding errors for the HELA, the SE [32],
and the GA [17] are shown in Fig. 20(b).

Table 3 shows the results given in the relevant literature plus the error found using TFM training by the proposed
HELA. The column sum of absolute error of the table is used to test their regulation performance; a performance
index, sum of absolute error, is defined by

Sum of absolute error =

∑
k

|yref(k)− y(k)| (18)

where yref(k) and y(k) are the reference output and the actual output of the simulated system, respectively. For the
aforementioned simulation results, Table 3 has shown that the proposed HELA method has better performance than
other methods. For the proposed HELA, however, no controller parameters have to be decided in advance.
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Fig. 20. The tracking of the TFM training by the proposed HELA when a change occurs in the water bath system. (b) The error curves of the
HELA, the SE [32], and the GA [17].

Table 3
Performance comparison of various controllers

Sum of absolute error HELA PID Manually designed fuzzy controller GA [17] SE [32]

Regulation performance 358.07 418.5 401.5 378.02 365.20
Influence of impulse noise 253.93 311.5 275.8 262.77 258.80
Effect of change in plant dynamics 237.44 322.2 273.5 280.38 244.14
Tracking performance 50.71 100.6 88.1 100.22 87.18

5. Conclusion

In this paper, a hybrid evolutionary learning algorithm (HELA), which combines the compact genetic algorithm
(CGA) and the modified variable-length genetic algorithm (MVGA), was proposed for solving identification and
control problems. In HELA, individuals of the same length are constituted into the same group and there are multiple
groups in a population. The proposed HELA can create and train the TFM in a highly autonomous way. Thus, users
need not give it any a priori knowledge or even any initial information on these. More notably, the HELA can
partition input space, tune membership functions, and find proper fuzzy rules dynamically upon receiving training
data. Computer simulations have shown that the proposed HELA method perform better than some existing methods.
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